19 research outputs found

    Stochastic Model Predictive Control for Eco-Driving Assistance Systems in Electric Vehicles

    Get PDF
    Electric vehicles are expected to become one of the key elements of future sustainable transportation systems. The first generation of electric cars are already commercially available but still, suffer from problems and constraints that have to be solved before a mass market might be created. Key aspects that will play an important role in modern electric vehicles are range extension, energy efficiency, safety, comfort as well as communication. An overall solution approach to integrating all these aspects is the development of advanced driver assistance systems to make electric vehicles more intelligent. Driver assistance systems are based on the integration of suitable sensors and actuators as well as electronic devices and software-enabled control functionality to automatically support the human driver. Driver assistance for electric vehicles will differ from the already used systems in fuel-powered cars such as electronic stability programs, adaptive cruise control etc. in a way that they must support energy efficiency while the system itself must also have a low power consumption. In this work, an eco-driving functionality as the first step towards those new driver assistance systems for electric vehicles will be investigated. Using information about the internal state of the car, navigation information as well as advanced information about the environment coming from sensors and network connections, an algorithm will be developed that will adapt the speed of the vehicle automatically to minimize energy consumption. From an algorithmic point of view, a stochastic model predictive control approach will be applied and adapted to the special constraints of the problem. Finally, the solution will be tested in simulations as well as in first experiments with a commercial electric vehicle in the SnT Automation & Robotics Research Group (SnT ARG)

    Model predictive control of connected spacecraft formation.

    Get PDF
    In this contribution the authors discuss the application of Model Predictive Control (MPC) to achieve a connected network formation of spacecrafts. A set of three spacecrafts are used to achieve in-plane formation which are initially in a connected network. Two scenarios including formation control and formation control with collision avoidance in a leader-follower configuration is addressed through simulation studies. The aspect of MPC stability and network connectivity is also addressed briefly in the context of formation control

    Ecological Advanced Driver Assistance System for Optimal Energy Management in Electric Vehicles

    Get PDF
    Battery Electric Vehicles have a high potential in modern transportation, however, they are facing limited cruising range. The driving style, the road geometries including slopes, curves, the static and dynamic traffic conditions such as speed limits and preceding vehicles have their share of energy consumption in the host electric vehicle. Optimal energy management based on a semi-autonomous ecological advanced driver assistance system can improve the longitudinal velocity regulation in a safe and energy-efficient driving strategy. The main contribution of this paper is the design of a real-time risk-sensitive nonlinear model predictive controller to plan the online cost-effective cruising velocity in a stochastic traffic environment. The basic idea is to measure the relevant states of the electric vehicle at runtime, and account for the road slopes, the upcoming curves, and the speed limit zones, as well as uncertainty in the preceding vehicle behavior to determine the energy-efficient velocity profile. Closed-loop Entropic Value-at-Risk as a coherent risk measure is introduced to quantify the risk involved in the system constraints violation. The obtained simulation and field experimental results demonstrate the effectiveness of the proposed method for a semi-autonomous electric vehicle in terms of safe and energy-efficient states regulation and constraints satisfaction

    Fast Stochastic Non-linear Model Predictive Control for Electric Vehicle Advanced Driver Assistance Systems

    Get PDF
    Semi-autonomous driving assistance systems have a high potential to improve the safety and efficiency of the battery electric vehicles that are enduring limited cruising range. This paper presents an ecologically advanced driver assistance system to extend the functionality of the adaptive cruise control system. A real-time stochastic non-linear model predictive controller with probabilistic constraints is presented to compute on-line the safe and energy-efficient cruising velocity profile. The individual chance-constraint is reformulated into a convex second-order cone constraint which is robust for a general class of probability distributions. Finally, the performance of proposed approach in terms of states regulation, constraints fulfilment, and energy efficiency is evaluated on a battery electric vehicle

    Stochastic Optimum Energy Management for Advanced Transportation Network

    Get PDF
    Smart and optimal energy consumption in electric vehicles has high potential to improve the limited cruising range on a single battery charge. The proposed concept is a semi-autonomous ecological advanced driver assistance system which predictively plans for a safe and energy-efficient cruising velocity profile autonomously for battery electric vehicles. However, high entropy in transportation network leads to a challenging task to derive a computationally efficient and tractable model to predict the traffic flow. Stochastic optimal control has been developed to systematically find an optimal decision with the aim of performance improvement. However, most of the developed methods are not real-time algorithms. Moreover, they are mainly risk-neutral for safety-critical systems. This paper investigates on the real-time risk-sensitive nonlinear optimal control design subject to safety and ecological constraints. This system improves the efficiency of the transportation network at the microscopic level. Obtained results demonstrate the effectiveness of the proposed method in terms of states regulation and constraints satisfaction

    Risk-averse Stochastic Nonlinear Model Predictive Control for Real-time Safety-critical Systems

    Get PDF
    Stochastic nonlinear model predictive control has been developed to systematically find an optimal decision with the aim of performance improvement in dynamical systems that involve uncertainties. However, most of the current methods are risk-neutral for safety-critical systems and depend on computationally expensive algorithms. This paper investigates on the risk-averse optimal stochastic nonlinear control subject to real-time safety-critical systems. In order to achieve a computationally tractable design and integrate knowledge about the uncertainties, bounded trajectories generated to quantify the uncertainties. The proposed controller considers these scenarios in a risk-sensitive manner. A certainty equivalent nonlinear model predictive control based on minimum principle is reformulated to optimise nominal cost and expected value of future recourse actions. The capability of proposed method in terms of states regulations, constraints fulfilment, and real-time implementation is demonstrated for a semi-autonomous ecological advanced driver assistance system specified for battery electric vehicles. This system plans for a safe and energy-efficient cruising velocity profile autonomously

    Impact of different spacing policies for adaptive cruise control on traffic and energy consumption of electric vehicles

    Get PDF
    This paper assesses the impact of different spacing policies for Adaptive Cruise Control (ACC) systems on traffic and environment. The largest deal of existing studies focus on assessing the performance in terms of safety, while only few deal with the effect of ACC on the traffic flow and the environment. In particular, very little is know on traffic stability and energy consumption. In this study, the vehicles equipped with ACC are modelled and controlled by two different spacing policies. Besides, Human Driving Behavior (HDB) is modelled by using Gipps model for comparison and for simulating different penetration rates. As distinguished from other studies, vehicle dynamics and energy consumption of an electric car is formulated, which has completely different characteristics and limitations than combustion engine cars. Hence the study aims at providing additional understanding of how ACC-equipped electric vehicles will behave in dense traffic conditions. HDB and ACC vehicles are placed in a roundabout at different penetration rates. String stability and energy consumption are investigated by giving a shock wave to a stable traffic condition. It is found that ACC with quadratic spacing policy has significantly positive effects on string stability and energy consumption

    Model predictive control for spacecraft rendezvous.

    Get PDF
    The current paper addresses the problem of Spacecraft Rendezvous using Model Predictive Control (MPC). The Clohessy-Wiltshire-Hill equations are used to model the spacecraft relative motion. Here the rendezvous problem is discussed by trajectory control using MPC method. Two different scenarios are addressed in trajectory control. The first scenario consist of position control with fuel constraint, secondly the position control is performed in the presence of obstacles. Here the problem of fuel consumption and obstacle avoidance is addressed directly in the cost function. The proposed methods are successfully analysed through simulations
    corecore